

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 05.05.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $k \in \mathbb{Z}$, $d \in \mathbb{N}$, $k + d \neq 0$. Let D be defined as

$$D := \begin{cases} C_c^\infty(\mathbb{R}^d) & \text{if } k \geq 0, \\ C_c^\infty(\mathbb{R}^d \setminus \{\mathbf{0}\}) & \text{if } k \leq -1, \ k + d \neq 0. \end{cases} \quad (1)$$

Prove that for any $\psi \in D$

$$\int_{\mathbb{R}^d} |\mathbf{x}|^k |\psi(\mathbf{x})|^2 d\mathbf{x} \leq \frac{4}{|k+d|^2} \int_{\mathbb{R}^d} |\mathbf{x}|^{k+2} |\nabla \psi(\mathbf{x})|^2 d\mathbf{x}. \quad (2)$$

Hint: Use the fact that

$$|\mathbf{x}|^k = \frac{1}{k+d} \sum_{j=1}^d \frac{\partial}{\partial x_j} (|\mathbf{x}|^k x_j) \quad (3)$$

to integrate by part on the left hand side of (2) and then use the Cauchy-Schwartz inequality.

Remark: Notice that in particular if $k = -2$ (and $d \neq 2$) this implies that as operators

$$\frac{1}{|\mathbf{x}|^2} \leq -\frac{4}{|d-2|} \Delta. \quad (4)$$

A generalisation of this formula is called in the literature the **Hardy inequality**.

Exercise 2

a Let $\mathcal{H} := L^2(\mathbb{R}^3)$. Define (as in class) the operator H_0 with¹

$$\mathcal{D}(H_0) := H^2(\mathbb{R}^3) \equiv \left\{ \psi \in \mathcal{H} \mid |\mathbf{k}|^2 \hat{\psi}(\mathbf{k}) \in L^2(\mathbb{R}^3) \right\}, \quad (5)$$

$$H_0 \psi = -\Delta \psi = \left(|\mathbf{k}|^2 \hat{\psi}(\mathbf{k}) \right)^\vee, \quad \forall \psi \in \mathcal{D}(H_0). \quad (6)$$

Prove that H_0 is closed.

b Let $\mathcal{D}(H) := \mathcal{D}(H_0)$. Define $H := H_0 + \frac{1}{|\mathbf{x}|}$. Prove that H is well-defined and closed. (Assume, if necessary, to know that there exists a positive constant C such that for any $\psi \in H^2(\mathbb{R}^3)$ it holds $\|\psi\|_{L^\infty} \leq C \|\psi\|_{H^2}$).

¹Recall that we proved in the exercise session that if $\|\psi\|_{H^2} := \left\| (1 + |\mathbf{k}|^2) \hat{\psi} \right\|_{L^2}$, then $H^2(\mathbb{R}^3)$ is closed with respect to $\|\cdot\|_{H^2}$.

Hint: Use the fact that $H^2(\mathbb{R}^3) \subseteq L^\infty(\mathbb{R}^3)$ to prove that is well-defined. To prove the closure, use (2) from Exercise 1 to show and subsequently use that $\forall \varepsilon > 0$, $\forall \psi \in \mathcal{D}(H)$

$$\left\| \frac{1}{|\mathbf{x}|} \psi \right\|_{L^2} \leq \frac{2}{\varepsilon} \|\psi\|_{L^2} + \varepsilon \|H_0 \psi\|_{L^2} \quad (7)$$

to get that

$$\|H_0 \psi\|_{L^2} \leq \frac{2}{\varepsilon(1-\varepsilon)} \|\psi\|_{L^2} + \frac{1}{1-\varepsilon} \|H \psi\|_{L^2}. \quad (8)$$

c Prove that H is symmetric.

d Prove that H is self-adjoint.

Hint: Use the fact that $\frac{1}{|x|}$ is a self-adjoint operator and apply the Kato-Rellich theorem.

Exercise 3

Let \mathcal{H} an Hilbert space and let $A, B \in \mathcal{B}(\mathcal{H})$, $A^* = A$, $B^* = B$

a Suppose² $A \geq \text{id}$; prove that A is invertible with $A^{-1} \in \mathcal{B}(\mathcal{H})$ and that $0 \leq A^{-1} \leq \text{id}$.

b Suppose $0 \leq A \leq B$; prove that for any $\lambda > 0$, $A + \lambda \text{id}$ and $B + \lambda \text{id}$ are invertible with $(A + \lambda \text{id})^{-1}$, $(B + \lambda \text{id})^{-1} \in \mathcal{B}(\mathcal{H})$ and that we have $(B + \lambda \text{id})^{-1} \leq (A + \lambda \text{id})^{-1}$.

c Suppose $0 \leq A \leq B$; prove that $\sqrt{A} \leq \sqrt{B}$.

Hint: Prove and use the fact that

$$\sqrt{x} = \frac{1}{\pi} \int_0^{+\infty} \frac{1}{\sqrt{\lambda}} \left(1 - \frac{\lambda}{x+\lambda} \right) d\lambda, \quad \forall x \geq 0. \quad (9)$$

Exercise 4

Let \mathcal{H} be an Hilbert space. Let A be a linear self-adjoint operator on \mathcal{H} with $A \geq 0$ and $\lambda > 0$. Denote with $\|\cdot\|$ the operator norm and with $\|\cdot\|_{\mathcal{H}}$ the norm induced by the inner product in the Hilbert space \mathcal{H} .

a Prove that $\|(A + \lambda \text{id})^{-1}\| \leq 1/\lambda$.

b Prove that for all $\psi \in \mathcal{H}$,

$$\|\psi\|_{\mathcal{H}}^2 \geq \left\| A(A + \lambda \text{id})^{-1} \psi \right\|_{\mathcal{H}}^2 + \lambda^2 \left\| (A + \lambda \text{id})^{-1} \psi \right\|_{\mathcal{H}}^2. \quad (10)$$

Conclude that $\|A(A + \lambda \text{id})^{-1}\| \leq 1$.

²Recall that $A \geq 0$ if for any $\psi \in \mathcal{D}(A)$, $\langle \psi, A\psi \rangle \geq 0$ and that $A \geq B$ if $A - B \geq 0$.